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1 Introduction

In this extended abstract, we consider the “small n, large p” prediction problem, where the number of
available samples n is much smaller compared to the number of covariates p. This challenging setting
is common for multiple applications, such as precision medicine, where obtaining additional samples
can be extremely costly or even impossible. Extensive research effort has recently been dedicated
to finding principled solutions for accurate prediction. However, a valuable source of additional
information, domain experts, has not yet been efficiently exploited.

We propose to integrate expert knowledge as an additional source of information in high-dimensional
sparse linear regression. We assume that the expert has knowledge on the relevance of the features in
the regression and formulate the knowledge elicitation as a sequential probabilistic inference process
with the aim of improving predictions. We introduce a strategy that uses Bayesian experimental design
[2] to sequentially identify the most informative features on which to query the expert knowledge.
The evaluation of our method in simulation experiments shows improved prediction accuracy already
with a small effort from the expert.

By interactively eliciting and incorporating expert knowledge, our approach fits into the interactive
learning literature [1, 10]. The ultimate goal is to make the interaction as effortless as possible for
the expert. This is achieved by identifying the most informative features on which to query expert
feedback and asking about them first, similarly to active learning strategies [12], where the most
informative additional samples are identified.

2 Method

We introduce a probabilistic model that subsumes both a sparse regression model which predicts
external targets, and a model for encoding expert knowledge. We then present a method to query
expert knowledge sequentially (one feature at a time), with the aim of getting fast improvement in the
predictive accuracy of the regression with a small number of queries.

For the regression, a Gaussian observation model with a spike-and-slab sparsity-inducing prior [4] on
the regression coefficients is used:

y ∼ N(Xw, σ2 I), (1)

wj ∼ γj N(0, ψ2) + (1− γj)δ0, j = 1, . . . , p,

γj ∼ Bernoulli(ρ), j = 1, . . . , p,

where y ∈ Rn are the output values and X ∈ Rn×p the matrix of covariate values. The regression
coefficients are denoted by w1, . . . , wp, and σ2 is the residual variance. The γj indicate inclusion
(γj = 1) or exclusion (γj = 0) of the covariates in the regression (δ0 is a point mass at zero). The
prior expected sparsity is controlled by ρ.
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The expert knowledge on the relevance of the features for the regression is encoded by a feedback
model:

fj ∼ γj Bernoulli(π) + (1− γj) Bernoulli(1− π), (2)

where fj = 1 indicates that feature j is relevant and fj = 0 not-relevant, and π is the probability
that the expert feedback is correct relative to the state of the covariate inclusion indicator γj .

As the number of covariates p can be large, we assume that it is infeasible, or at least unnecessarily
burdensome, to ask the expert about each feature. Instead, we aim to ask first about the features that
are estimated to be the most informative given the (small) training data, and frame this problem as a
Bayesian experimental design task [2, 11].

We prioritize the features based on their expected information gain for the predictive distribution of
the regression. As the expert is queried for the feedbacks sequentially, the posterior distribution of the
model and the prioritization is recomputed after each feedback in order to use the latest knowledge.
At iteration t for feature j, the expected information gain is

Ep(f̃j |Dt)

[∑
i

KL[p(ỹ|Dt,xi, f̃j) ‖ p(ỹ|Dt,xi)]

]
,

where Dt = {(yi, xi) : i = 1, . . . , n} ∪ {fj1 , . . . , fjt−1
} denotes the training data together with the

feedback that has been given at previous iterations and p(f̃j |Dt) is the posterior predictive distribution
of the feedback for the jth feature. The summation over i goes over the training dataset. We assume
that each feature will be queried about only once (or not at all if the iterations are terminated before
reaching p).

This query scheme goes beyond pure prior elicitation [3, 7, 9] as the training data is used to facilitate
an efficient expert knowledge elicitation. This is a crucial aspect that enables the elicitation in high-
dimensional regression. The Bayesian probabilistic framework provides a natural way to sequentially
update the inferences.

The probabilistic model does not have a closed form posterior distribution or solution to the infor-
mation gain maximization problem. To achieve fast computation, important for possible real-time
interactive knowledge elicitation, we use expectation propagation [8] to deterministically approximate
the posterior distribution and the required quantities for the expected information gain [5, 6, 11].

3 Experiments

We evaluate the performance of the proposed method in a “small n, large p” regression problem with
synthetic data.

Setting. The covariates of n training data points are generated from X ∼ N(0, I). Out of the p
regression coefficients w1, . . . , wp ∈ R, p∗ are generated from wj ∼ N(0, ψ2) and the rest are set
to zero. The output values are generated from y ∼ N(Xw, σ2 I). The expert has noisy knowledge
about non-relevant/relevant features (Eq. 2 with γj = 1 if wj is non-zero, and γj = 0 otherwise, and
π = 0.95). For a generated set of training data, the expert feedback is queried one feature at a time.
Mean squared error (MSE) is used as the performance measure to evaluate query strategies. We use
the known data-generating values for the fixed hyperparameters: σ2 = 1 , ψ2 = 1, and ρ = p∗/p.

We compare four query strategies:

• random feature suggestions (green line, triangle up),
• an “oracle” strategy that knows the relevant features beforehand and queries the expert about them

first, and then chooses at random from the features not already selected (red line, triangle down)1,
• our sequential experimental design strategy (Sect. 2) (blue line, squares),
• a non-sequential version of our strategy, which chooses the sequence of features to be queried

before observing any expert feedback (magenta line, circles).

Results. In Fig. 1, we consider a “small n, large p” scenario, with n = 10, p = 100, p∗ = 10 and
report the average MSE value over 500 runs (repetitions of the data generation). The results in the

1Although unrealistic, this “oracle” strategy allows to see the performance gain obtainable by an intuitively
good strategy which first queries experts about the relevant features.
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Figure 1: Mean squared errors for the four query strategies. The number of relevant features p∗ = 10
out of p = 100 features and the number of training data points n = 10. Note that the red strategy is
not available in practice.

plot are shown for an increasing number of feedbacks, up to the number of dimensions where all
strategies converge. For the “oracle” strategy, the reduction in the MSE is fast in the first feedback
iterations where it queries the expert on the 10 relevant features only. This implies that querying about
these features is important in this setting. The experimental design strategies are able to identify these
features reasonably well and their performances are very close to just asking about relevant features
in the first interactions. After 30 feedback, our method reaches the same MSE level as the oracle, and
performs better thereon until the last step, indicating that even the order of asking feedback on the
non-relevant features affects the speed of MSE reduction.

With regard to the realistic scenario of a limited number of feedbacks, both experimental design
strategies have a faster increase in the prediction accuracy in the first iterations compared to the
random strategy. This implies that both experimental design strategies are able to identify and ask
with priority about more informative features. Compared to the non-sequential selection strategy
that does not take into account the observed expert feedback, the more carefully selected sequence
of queries done by the sequential experimental design strategy reduces the prediction error faster,
indicating that the accumulated expert feedback affects the next query.

4 Conclusions

We presented an expert knowledge elicitation approach for high-dimensional sparse linear regression.
The results for a “small n, large p” problem in simulated data, with expert knowledge on the
relevance of features, showed improved prediction accuracy already with a small number of expert
feedbacks. Compared to pure prior elicitation, the approach can be used in knowledge elicitation for
high-dimensional parameters without overwhelming the expert.
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