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1 Introduction
Consider the situation where a company has to make an accurate prediction of the result of a poll
(e.g., an election). The company has relevant information on all the participants (age, profession,
etc), but can only question a small number of them on their voting preferences. The obtained re-
sponses can then be used to infer a preference model for all the individuals in the group. To obtain an
accurate estimation of the preference model, the company should use a strategy which sequentially
selects the mostinformative members of the group.

More generally, the previous scenario can be framed as the problem of learning a noisy function
uniformly well over a given input set. In this paper we focus on the specific case of linear functions,
where the previous objective reduces to learning an accurate estimate of the weight vector that
characterizes the function. We formalize this problem in the linear bandit setting, where each arm
is a d - dimensional feature vector. In particular, we consider the setting where each pull to an
armx returns the linear combination betweenx and an unknown parameter vectorθ perturbed by
heteroscedastic noise. The objective is then to select the armsx within a setX which better allow
to return a good estimate ofθ after using a budget ofn samples. Because of this objective, our work
is closely related to optimal experimental design [6, 7] andto active learning.

The uniform estimation with limited budget problem has beenrecently studied for the multi-armed-
bandit (MAB), where the input space is the set of the orthogonal arms of the standard stochastic
bandit. With the objective of estimating uniformly well themean values of several distributions, the
authors in [2] and [4] estimate the variance per arm and exploit heteroscedasticity to allocate more
samples to the parts of the input space where the variance is larger. The linear bandit setting that
we consider here is an extension to the multi-armed bandit formalization and has the advantage of
generalizing the MAB model by allowing the arms to be correlated and by taking into account more
than two features at a time. Moreover, the linear bandit setting is a more realistic framework for the
allocation problems discussed above.

2 Preliminaries
Let X ⊆ R

d be a finite set of bounded arms such that|X | = k and for anyx ∈ X , ||x|| ≤ L.
When an armx is chosen, a noisy realization of an unknown functionf is observed. In particular,
we consider the linear case where a random realizationr from armx is defined as

r(x) = f(x) + ε(x) = x⊤θ + x⊤η, (1)

whereη is a multivariate noise with zero mean and covariance matrixΣ, andθ is an unknown vector.
Notice that unlike standard linear regression, in this casewe consider an heteroscedastic noiseε(x)
which strictly depends on the armx. Also, in contrast with the standard linear stochastic bandit
problem [1, 3, 5], where the goal is to choose the arm inX that yields the maximal reward, here we
focus on the problem of how to allocate a budget ofn pulls on different arms in order to have an
accurate estimate ofθ.

Let A be an algorithm which at each roundt = 1, . . . , n chooses an armxt and observes the
corresponding realizationrt = x⊤

t θ + εt = x⊤
t θ + x⊤

t ηt. For any sequence{xt, rt}
n
t=1 of arm-

observation pairs we denote byXn ∈ R
n×d with [Xn]t,i = xt,i the matrix of chosen arms, by

Rn ∈ R
n with [Rn]t = rt the vector of observations, and byEn ∈ R

n with [En]t = εt the vector
of noise. OnceA used all the budget ofn, we compute the least-squares estimate ofθ:

θ̂olsn = A−1
n bn, (2)
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with An =
∑n

t=1 xtx
⊤
t = X⊤

n Xn andbn =
∑n

t=1 rtxt = X⊤
n Rn. For each armx ∈ X we define

the prediction error of̂θolsn as the expected quadratic lossLn(x) = E[(x⊤θ̂olsn − x⊤θ)2] where the
expectation refers to all possible sources of randomization in the observationsrt and in the choice
of the sequence of armsxt. Overall, we define the performance of the algorithmA by the loss
corresponding to the worst estimated arm, i.e.

Ln(A) = max
x∈X

Ln(x). (3)

The objective is, given a fixed budgetn, to design an algorithmA that minimizes the lossLn(A).

3 The Optimal Static Allocation Algorithm
Consider a static allocation strategyA which selects arms{xt} independently from the observations.
The covariance of̂θolsn can be computed as

V[θ̂olsn |Xn] = E

[
(θ̂olsn − θ)(θ̂olsn − θ)⊤|Xn

]
(4)

= (X⊤
n Xn)

−1X⊤
n E[EnE

⊤
n ]Xn(X

⊤
n Xn)

−1

= (X⊤
n Xn)

−1X⊤
n ΩnXn(X

⊤
n Xn)

−1,

whereΩn = diag(σ2(x1), . . . , σ
2(xn)) with σ2(xt) = V[εt] = x⊤

t Σxt. SinceA is static, then
the previous expectations are conditioned on the fixed set ofarms chosen overn rounds, which are
summarized by the matrixXn. Thus, the lossLn(x) can now be expressed directly as

Ln(x; Σ, Xn) = E[(x⊤θ̂olsn − x⊤θ)2|Xn] = x⊤
V[θ̂olsn |Xn]x,

where we make explicit the dependency of the loss on the sequence of armsXn and the covariance
matrix Σ in Ln(x; Σ, Xn). As a result, an optimal static allocation should select thesequence of
armsXols

n ∈ argminXn
maxx∈X Ln(x; Σ, Xn). Although this allocation cannot be computed in

closed form, an almost equivalent allocation can be obtained by pulling at each timet the arm

xols
t = argmax

x∈X

Lt(x; Σ, X
ols
t−1), (5)

which corresponds to pulling the arm with the largest loss ateach time step. Notice that this alloca-
tion does not require any actual observationrt since it only relies on the set of armsX and on the
covariance matrixΣ. It is interesting to analyze the behavior of optimal allocation in simple cases:

• If the arms form an orthogonal basis inRd, then the arms are all independent and the problem
reduces to the active learning in multi-armed bandit setting studied in [2, 4]. As a result, the
optimal strategy directly allocates the budget over arms proportionally to their variance (i.e., the
number of times an armx is pulled is proportional toσ2(x)/

∑
x′ σ2(x′)).

• If the noise is homoscedastic (i.e.,Σ = σ2I), then the optimal allocation is no longer driven by
the variance of the arms, but it still needs to compensate fora possibly uneven distribution of the
arms inRd by allocating less samples to the arms in regions ofR

d which are dense of many arms.

• In the general case of heteroscedastic noise and an arbitrary set of armsX , the optimal strategy
implements an allocation that balances both the different variance of the arms and their uneven
distribution inRd.

This qualitative description of the behavior of the optimalstatic allocation can be also illustrated by
inspecting the definition of the lossL. Let s ∈ R

n bes = x⊤(X⊤
n Xn)

−1X⊤ such that for anyt,
st = (x⊤A−1

n )xt. Then, the loss can be written as follows:

L(x; Σ, Xn) =

n∑

t=1

s2tσ
2(xt) =

∑

x′∈X

Tn(x
′)(x⊤A−1

n x′

︸ ︷︷ ︸
(a)

)2 ((x′)⊤Σ x′)︸ ︷︷ ︸
(b)

, (6)

whereTn(x
′) denotes the number of times that armx′ was pulled up to timen. This form of the loss

emphasizes the two elements that should be taken into account in designing an allocation strategy:
the shape of the input space (terma) and the noise covariance matrix (termb).
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4 Learning Algorithm

Input: input spaceX , budgetn
while t ≤ n do

ComputeBt(x) = max
Σ̃∈Γt

L(x; Σ̃, Xt−1)
Selectxt = argmax

x∈X

Bt(x)

Pull xt twice and observert, r′t
Computêvt = C−1

t
dt andΣ̂t = diag(v̂t)

Compute the confidence setΓt (eq. 9)
t = t + 2

end while
Returnθ̂n = A−1

n bn

Figure 1: Learning algorithm

In a more realistic setting, the noise covariance
matrix is unknown in advance, thus we need a
learning strategy which is able to estimateΣ
and at the same time to implement the opti-
mal allocation suggested by equation 5. This
requires to find a suitable trade-off between the
explorationof the entire input space, with the
objective of learning a good estimate ofΣ (de-
noted Σ̂), and theexploitation of the current
estimate to select arms according to the (esti-
mated) optimal allocation. In order to define
such a trade-off we rely on the construction of
confidence bounds on the loss of each arm. The
resulting algorithm is sketched in Figure 1.

The most critical aspect of the algorithm is how
to actually compute an estimatêΣ and how to build a confidence bound on it. In fact, although the
idea of using upper confidence bounds has already been used in[4], unlike in the multi-arm bandit
setting, the estimation of the variance of the noise is not trivial. In fact, we can only rely on noisy
observations perturbed by a multivariate heteroscedasticnoise which cannot be observed directly
and which depend on the choice of the arm itself.

In order to simplify the derivation of an estimate of the covariance matrix and the construction of a
confidence bound, we first introduce an assumption on the noiseη.

Assumption 1. Let the noiseη be bounded in[0, 1]d. Furthermore, letv ∈ R
d be the vector

v = [σ2
1 , . . . , σ

2
d] such that the covariance matrix is the diagonal matrixΣ = diag(σ2

1 , . . . , σ
2
d).

While the boundedness of the noise allows us to use standard concentration inequalities, a diagonal
covariance matrix makes it possible to reduce the covariance estimation to a regularized regression
problem. In fact, we notice that for any armx ∈ X , if we denotey = x2, then the variance of the
corresponding observations can be written as:

σ2(x) = x⊤Σx =

d∑

i=1

x2
iσ

2
i = y⊤v (7)

Equation (7) shows that the variance of the observations is alinear function with respect to the inputs
y and the unknown variance vectorv.

Although this simplifies the estimation ofΣ, it is still required that at each time stept, when arm
xt is selected, two independent samplesrt andrt′ need to be generated. This way we can construct
the samplezt = 1

2 (rt − r′t)
2, which is an unbiased sample of the variance of the observations

corresponding toxt, sinceE[zt] = y⊤t v = σ2(xt). Thus, we can set up the following regularized
least squares problem1

v̂t = argmin
v∈Rd

[2
t

t∑

t′=1

(
y⊤t′ v − zt′

)2
+ λ||v||2

]
= C−1

t dt, (8)

with Ct =
∑n

t′=1 yt′y
⊤
t′ + λI = Y ⊤

t Yt + λI anddt =
∑n

t′=1 zt′yt′ = Y ⊤
t Zt.

Note that the requirement to sample each arm twice does not necessarily correspond to a worsening
of the performance. In fact, the same arm can be the one maximizing the loss several times before
consuming the budget. Also, according to the performance measure of the algorithm, its efficiency
can only be measured after the final sampling round, thus the order in which the arms are selected
does not matter.

For the estimated variance vectorv̂ we can now rely on the self-normalized martingale techniques
previously developed in the linear bandit setting [1]. Thus, we can derive the following lemma.

1Notice that because of the double sampling, the total amount of samples available aftert steps is onlyt/2.
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Lemma 1. Let v̂n be the regularized least-squares estimate of the variance vectorv. Let ||v||22 =∑d
i=1 σ

4
i ≤ V 2 andη satisfy Assumption 1. Then the confidence interval (recall that ||yt||2 ≤ L2)

Γt =

{
s ∈ R

d, ‖v̂t − s‖Ct
≤

√
d log

(
1 + tL4/λ

δ

)
+ λ1/2V

}
, (9)

is such thatv ∈ Γt with probability at least1− δ, for all δ > 0, andt ≥ 0.

The construction of the confidence set allows to choose at each time step the arm which maximizes
the loss, for all possible values of the estimate ofΣ. Now, it is crucial to be able to progressively
tighten the confidence sets and to select at each step the worst-case arm, i.e.,xt which maximizes
the loss for all possible estimate ofΣ in the current confidence setΓt.

As showed in the pseudo code, the adaptive algorithm proceeds at every time stept according to
the following steps. First, it estimateŝvt and builds a confidence set around it. Then, choosing as
Σ̃t all possible vectors in the confidence set, it computes an upper bound on the possible loss,Bt.
The choice of̃Σ andx ∈ X which generatedBt are then used at time stept+ 1 when the adaptive
algorithm pullsxt = argmaxx∈X Bt.

5 Experiments and Conclusion

We illustrate the performance of the learning strategy and compare it with the optimal static strategy
(whenΣ is known in advance), and with the uniform strategy (unif+) which focuses only on the
subset ofd arms inX which are the closest to form an orthogonal basis, i.e., the subset of arms
selected by the optimal allocation. We consider an input setconsisting of five vectors inR2, as
pictured in Fig. 2, and we define a noiseη with a variance vectorv = [0.1, 0.4]. In Fig. 3 we
report the lossLn(A) multiplied byn. In fact, any static allocation strategy is expected to have
a decreasing loss of the order ofO(1/n), thus in order to remove this trend and to emphasize the
behavior of the different algorithms we plotnLn(A).

As illustrated in Fig. 3, the rescaled loss of the learning algorithm actually decreases from a per-
formance similar to the uniform allocation down to the performance of the optimal allocation. This
behavior suggests that as the budget grows, the loss of the learning algorithm tends to decrease as
fast as for the optimal static allocation.
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Figure 2: The input setX , the covariance matrix
(blue), and theθ vector (star).
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Figure 3: Rescaled lossnLn(A).

These preliminary numerical results show that the learningalgorithm is effective in allocating the
available budgetn over arms to first estimate their variance and then to performa nearly-optimal
allocation. This preliminary work opens a number of interesting future challenges. In particular, we
will focus on the general case of an infinite arm spaceX , the case of an arbitrary covariance matrix
Σ (and not diagonal), and we will derivate regret guarantees for the learning algorithm in the line
of [4].
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