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1 Introduction

Consider the situation where a company has to make an aequidiction of the result of a poll
(e.g., an election). The company has relevant informatimlbthe participants (age, profession,
etc), but can only question a small number of them on theinggbreferences. The obtained re-
sponses can then be used to infer a preference model foeafidividuals in the group. To obtain an
accurate estimation of the preference model, the companyldluse a strategy which sequentially
selects the moshformative members of the group.

More generally, the previous scenario can be framed as tif@degmn of learning a noisy function
uniformly well over a given input set. In this paper we focustioe specific case of linear functions,
where the previous objective reduces to learning an acewstimate of the weight vector that
characterizes the function. We formalize this problem mlthear bandit setting, where each arm
is ad - dimensional feature vector. In particular, we consider $ktting where each pull to an
armz returns the linear combination betweerand an unknown parameter vectoperturbed by
heteroscedastic noise. The objective is then to selectrthezawithin a sett’” which better allow

to return a good estimate @fafter using a budget af samples. Because of this objective, our work
is closely related to optimal experimental design [6, 7] samdctive learning.

The uniform estimation with limited budget problem has besently studied for the multi-armed-

bandit (MAB), where the input space is the set of the ortheg@anms of the standard stochastic
bandit. With the objective of estimating uniformly well theean values of several distributions, the
authors in [2] and [4] estimate the variance per arm and é@xipéteroscedasticity to allocate more
samples to the parts of the input space where the varianeggier] The linear bandit setting that
we consider here is an extension to the multi-armed banditdbzation and has the advantage of
generalizing the MAB model by allowing the arms to be cotetieand by taking into account more
than two features at a time. Moreover, the linear banditrggis a more realistic framework for the

allocation problems discussed above.

2 Preliminaries

Let ¥ C R? be a finite set of bounded arms such th¥t = & and for anyz € X, ||z|| < L.
When an arme is chosen, a noisy realization of an unknown functjois observed. In particular,
we consider the linear case where a random realizatfoom armz is defined as

(@) = f(z) +e(@) =20+ n, €h)

wheren is a multivariate noise with zero mean and covariance matrandd is an unknown vector.
Notice that unlike standard linear regression, in this eeseonsider an heteroscedastic naise)
which strictly depends on the arm Also, in contrast with the standard linear stochastic and
problem [1, 3, 5], where the goal is to choose the ari®¥ithat yields the maximal reward, here we
focus on the problem of how to allocate a budgetgiulls on different arms in order to have an
accurate estimate of

Let A be an algorithm which at each round= 1,...,n chooses an arm; and observes the
corresponding realization, = z, 0 + ¢, = x/ 0 + =/ n,. For any sequencgr;,r,}1 , of arm-
observation pairs we denote by, € R"*? with [X,],;, = x,, the matrix of chosen arms, by
R, € R™with [R,,]; = r; the vector of observations, and by, € R™ with [E,]; = ¢; the vector
of noise. OnceA used all the budget of, we compute the least-squares estimaté of

0ols = A, by, @)



with A, = >0 2] = X,] X,, andb, = Y7, 2 = X,] R,,. For each arm: € X we define
the prediction error ofi?’s as the expected quadratic loss(z) = E[(zT#%'s — 2T #)?] where the
expectation refers to all possible sources of randomimatidhe observations, and in the choice
of the sequence of arms. Overall, we define the performance of the algorithirby the loss
corresponding to the worst estimated arm, i.e.

Ln(A) = max Ln (). ®3)
The objective is, given a fixed budgetto design an algorithm that minimizes the losg,, (A).

3 The Optimal Static Allocation Algorithm

Consider a static allocation strategywhich selects arméz; } independently from the observations.
The covariance of°’* can be computed as

VIO Xa] = E|(67" — )05 — 0)T] X, (4)

= (XJXn)_lX;E[EnE;]Xn(X;Xn)_l
= (X X)X QX (X, X))

where(,, = diagc?(z1),...,0%(z,)) with 02(z;) = V[e;] = 2] Sx;. SinceA is static, then
the previous expectations are conditioned on the fixed sato$ chosen over rounds, which are
summarized by the matriX,,. Thus, the losd.,,(x) can now be expressed directly as

Ln(2:%, X,,) = E[(z 769 — 270)?|X,,] = 2 V[0 | X, ]z,

where we make explicit the dependency of the loss on the segud armsX,, and the covariance
matrix ¥ in L, (z; %, X,,). As a result, an optimal static allocation should selectsthguence of
arms X2 € argminy, max,ex L, (7; 3, X,,). Although this allocation cannot be computed in
closed form, an almost equivalent allocation can be obtdoyepulling at each timethe arm

29" = argmax Ly (z; %, X)), (5)
reX
which corresponds to pulling the arm with the largest lossaah time step. Notice that this alloca-
tion does not require any actual observatigrsince it only relies on the set of armi$ and on the
covariance matrix. Itis interesting to analyze the behavior of optimal alki@main simple cases:

e If the arms form an orthogonal basisf, then the arms are all independent and the problem
reduces to the active learning in multi-armed bandit sgtftudied in [2, 4]. As a result, the
optimal strategy directly allocates the budget over arnep@rtionally to their variance (i.e., the
number of times an arm is pulled is proportional ta(z)/ >, o2(z')).

o If the noise is homoscedastic (i.&,= ¢21), then the optimal allocation is no longer driven by
the variance of the arms, but it still needs to compensata farssibly uneven distribution of the
arms inR“ by allocating less samples to the arms in regionRofvhich are dense of many arms.

e In the general case of heteroscedastic noise and an aylseaof armsY, the optimal strategy
implements an allocation that balances both the differantwmce of the arms and their uneven
distribution inR<,

This qualitative description of the behavior of the optirs@tic allocation can be also illustrated by
inspecting the definition of the logs Lets € R® bes = 2 (X,] X,,)~'X T such that for any,
s; = (x " A, Y)x,. Then, the loss can be written as follows:

L(z; 3, X,) = Zs ZT 1’) ((z ) ¥, (6)
vex (a) ()

whereT, (z’) denotes the number of times that arhwas pulled up to time. This form of the loss
emphasizes the two elements that should be taken into actodesigning an allocation strategy:
the shape of the input space (tesrand the noise covariance matrix (tebjn



4 Learning Algorithm

Ina more realistic setting, the noise covarian¢e Input: input spaceY, budget

matrix is unknown in advance, thus we need|a \hile ¢+ < n do

learning strategy which is able to estimafe ComputeB, () = maxs,p, L(z; S, X;-1)
and at the same time to implement the opli-  selectr, — arg max B:(z)

mal allocation suggested by equation 5. This zeX

requires to find a suitable trade-off between the ~ Pull z: twice and observe;, r}
explorationof the entire input space, with th Computed, = C;'d; and%, = diag(d;)
objective of learning a good estimate Bf(de- Compute the confidence séf (eq. 9)
noted f)), and theexploitation of the current entcl_th;ez

estimate to select arms according to the (esti- Returnd, = A5,

mated) optimal allocation. In order to define

such a trade-off we rely on the construction of
confidence bounds on the loss of each arm. The Figure 1: Learning algorithm
resulting algorithm is sketched in Figure 1.

The most critical aspect of the algorithm is how

to actually compute an estimafeand how to build a confidence bound on it. In fact, although the
idea of using upper confidence bounds has already been ug@dumlike in the multi-arm bandit
setting, the estimation of the variance of the noise is nattr In fact, we can only rely on noisy
observations perturbed by a multivariate heteroscedasige which cannot be observed directly
and which depend on the choice of the arm itself.

In order to simplify the derivation of an estimate of the ataace matrix and the construction of a
confidence bound, we first introduce an assumption on the nois

Assumption 1. Let the noisey be bounded irf{0, 1]%. Furthermore, letv € R? be the vector
v = [o%,...,02] such that the covariance matrix is the diagonal ma¥ix= diag(o?,...,02).

While the boundedness of the noise allows us to use standacgcwation inequalities, a diagonal
covariance matrix makes it possible to reduce the covagiastimation to a regularized regression
problem. In fact, we notice that for any arme X, if we denotey = z2, then the variance of the
corresponding observations can be written as:

d
o?(z) = ' Sz = Zm?a? =y’ (7)
i=1

Equation (7) shows that the variance of the observationBngar function with respect to the inputs
y and the unknown variance vecter

Although this simplifies the estimation &f, it is still required that at each time stepwhen arm
x; IS selected, two independent sampteandr;, need to be generated. This way we can construct

the samplez; = (r, — ;)% which is an unbiased sample of the variance of the obsensti

corresponding ta,, sinceE[z] = v v = o%(z;). Thus, we can set up the following regularized
least squares problém

9
U :argmin[gz (y;’rv_zt’)Q"_)‘HvHQ} ZCfldu (8)

vERE =1
with Cy = Z?’:l yt/y;,r + A = }/tT}/t + A\ anddt = Z;L’:l Zp Yy = }/tTZt.

Note that the requirement to sample each arm twice does netssarily correspond to a worsening
of the performance. In fact, the same arm can be the one marthe loss several times before
consuming the budget. Also, according to the performancasuare of the algorithm, its efficiency
can only be measured after the final sampling round, thusrtter in which the arms are selected
does not matter.

For the estimated variance vectowe can now rely on the self-normalized martingale techréque
previously developed in the linear bandit setting [1]. Thwe can derive the following lemma.

"Notice that because of the double sampling, the total amount of sampitebée aftert steps is only /2.



Lemma 1. Let4, be the regularized least-squares estimate of the variaeceovo. Let||v|3 =
Zle o} < V2 andy satisfy Assumption 1. Then the confidence interval (rekatl|ty;||» < L?)

1+ tL4
T, — {S c Rd, ||1A1t _ SHCz < \/d log <+§/)\> + /\1/2V}7 9)

is such that € T'; with probability at leastl — o, for all 6 > 0, andt¢ > 0.

The construction of the confidence set allows to choose &t tae step the arm which maximizes
the loss, for all possible values of the estimate.ofNow, it is crucial to be able to progressively
tighten the confidence sets and to select at each step thecasesarm, i.eq; which maximizes
the loss for all possible estimate ¥fin the current confidence sEt.

As showed in the pseudo code, the adaptive algorithm precaeevery time step according to
the following steps. First, it estimatés and builds a confidence set around it. Then, choosing as

%, all possible vectors in the confidence set, it computes aemppund on the possible l0sB;.

The choice of: andz € X which generated; are then used at time stép- 1 when the adaptive
algorithm pullsz; = arg max, ¢ y B;.

5 Experiments and Conclusion

We illustrate the performance of the learning strategy amdpare it with the optimal static strategy
(when is known in advance), and with the uniform strategyif+) which focuses only on the
subset ofd arms inX’ which are the closest to form an orthogonal basis, i.e., tset of arms
selected by the optimal allocation. We consider an inputeasisting of five vectors ifR?, as
pictured in Fig. 2, and we define a noigewith a variance vector = [0.1,0.4]. In Fig. 3 we
report the los<.,,(.A) multiplied by n. In fact, any static allocation strategy is expected to have
a decreasing loss of the order©f1/n), thus in order to remove this trend and to emphasize the
behavior of the different algorithms we plof.,,(A).

As illustrated in Fig. 3, the rescaled loss of the learnirgpeathm actually decreases from a per-
formance similar to the uniform allocation down to the perfance of the optimal allocation. This
behavior suggests that as the budget grows, the loss ofaharg algorithm tends to decrease as
fast as for the optimal static allocation.
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Figure 2: The input set’, the covariance matrix )
(blue), and the vector (star). Figure 3: Rescaled lossL,, (A).

These preliminary numerical results show that the learaiggrithm is effective in allocating the
available budget: over arms to first estimate their variance and then to pertomearly-optimal
allocation. This preliminary work opens a number of intéresfuture challenges. In particular, we
will focus on the general case of an infinite arm spatgehe case of an arbitrary covariance matrix
3 (and not diagonal), and we will derivate regret guaranteeshie learning algorithm in the line
of [4].
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